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Line-density and Hamiltonian density, Random Bunch Set-up
J.Tiickmantel, April 2010

Aim: We assume an equilibrium bunch in a synchrotron with multi-frequency RF system
and possibly energy loss or acceleration per turn; for this bunch a linear line-density A(t)
is given. We want first to determine a mathematical expression for the density function p
in 2-dimensional longitudinal phase space having this T-projection A(t) and then a
randomized set of macro-particles corresponding to it.

Conventions:

* The longitudinal position of a particle in the bunch is expressed by their arrival time <,
hence particles with larger t arrive later.

 The t-location where there is no acceleration, i.e. eVge(t) — AU =0, AU expressing the
sum of energy loss and acceleration per machine turn, is called T, (equivalent to the
synchronous phase).

* We assume an equilibrium bunch, i.e. particles leaving a static phase-space volume
element are always replaced by the same number of particles entering it.

¢ For such an equilibrium bunch the projection A(t) for T = T, determines the complete
phase space population and hence also A(t) for T < T, and vice-versa. Therefore we can
only specify the line density for one side of t,, the other side is also determined then.

* During the synchrotron oscillation particles move between their most positive T to their
most negative t-excursion, creating a contribution to A(t) everywhere in-between. For a
realistic non-negative phase-space density the function A(t) can then never be less than
the contribution from the outer population. Therefore not any arbitrary function A(t)
corresponds to a real non-negative phase-space density.

The phase space dynamic

Each particle has a longitudinal position T and a deviation from the nominal particle
energy, U. On each turn the particle feels the fotal RF voltage Vgg(t) and the constant
energy change per turn AU=AU,+ AU,., the sum of a true energy loss AU, and a
nominal energy increase due to acceleration AU,.. Then the particle’s total energy
change per turn is
dU eV.(v) - AU

(1) U = U+ eV, (r) - AU o RF(;W

The second expression — T,, being the nominal revolution time — is the smooth
differential approximation. With a constant o — function of the machine’s transition
gamma v, and the particle momentum p, — a particle with energy deviation U’ drifts along
the machine from arrival time Tt to T’ or from longitudinal position T to T’ at the next turn

as

2) T =1+ U = £=
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Above transition energy a more energetic particle with U” > 0 arrives later than at the last
turn, i.e. T’ > 7, equivalent @ > 0. Again, the second expression is the smooth differential
approximation.
The differential approximations in (1) and (2) represent a system with time-independent
force' (conservative system) and can be derived from a Hamiltonian function H(U,z)
provided it holds the two relations

oH dU oH dt

3 — = = .2
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We define the potential P(t) — with an irrelevant integration constant — by?

4 P(t) = - [(eVee(® - AU) dv = AU-7 - ¢ [ V@) dr
and define

= _ o U? + P(7)
(5) HU,t) = =
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for which we have in fact N
oH eVer(t) = AU au
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hence (5) is Hamiltonian of this system. This means that in a phase-space defined for
these canonically conjugate variables U and t the local particle density

d’n
(8) p(z.U)

" dv dU
does not change while any differential volume is displaced from turn to turn (Liouville

theorem). Since we consider an equilibrium bunch where particles leaving a static phase-
space volume are exactly replaced by new ones arriving, this also means that p is
constant for all coordinates (U,t) that correspond to the same Hamiltonian. To simplify
for future use, we multiply (5) by T,,, yielding an easier function H

) H = ;a-U* + P(z)

that is also constant when (5) is constant.

Determination of the phase space density F(H) from A (1)

For any longitudinal phase space distribution in accelerators p is identical for —U and U.
L(t) may describe the number of particles that have a t-coordinate below T, hence L is a
scalar function, i.e. its value is independent under variable transformation of .
Considering only one bucket with the lower end at =T, we get

' The RF voltage is ‘probed’ only stroboscopically at times being integer multiple (harmonic number) of
the RF oscillation time, hence in this context the effective RF voltage appears independent of time, a
function of T only.

* above transition energy Vg around the synchronous time has to fall with increasing time. Then P(t) as
defined in (4) has a minimum around the synchronous location T, as it should be. Below transition energy P
would have a maximum and c has (o become less than zero for a stable bunch; then H — -H reestablishes
the usual situation with a minimum for —P(v),



(10) L(r) = ]jp (r.U) dU dv = 2 }}p(r,U) du dr

Tmin —® Tmin 0

We call A.(t) the directly measurable longitudinal - prOJected density between T and T+dt i
aL(z) _
(1D Aw) = —-
In contrast to L(t) the density function L(t) is not 1ndependent under transformation of t©
to another variable; therefore we prefer to use the scalar L(t) in the following
calculations.
We transform the double integral (10) to the variables P and H. P(7) is the potential
function, monotonous in T in the considered range on one side of T, only, else there
would be an expelling force and no bound particle movement. Then there is a one-to-one
correspondence between T and P, i.e. P(t) can be inverted.
The differential transformation matrix from t and U to P and H of (9) becomes

dP
dH a U E(P) dU
(12) = P, |\gzl =
dp 0 —(p) dt

drt
hence with 2(H - P)/a = U?

1 dv, . dH dP
13 dU- dv = 1, py A4
(13) = Ve )—\/H—P

The number of particles with a P-coordinate below P—P(t) then becomes

U(HP)d
o - Efe PR,

P
p has the same value for the same H, it is a function of H only: p(t,U) = F(H). Remind
that F is a density expressed for the phase space volume element dt-dU !!

(15) \Ffdpfm P) dH

Differentiating this expression with respect to T yields the density function A, (expressing
density per step-width dt, not dP!) but expressed for the argument P — P being uniquely
related to a corresponding T

dLdP  [2dP % F(H) dv -
(16) AP) = 2 = \F—-f——( ) 47 5) 4y

dP dt a dtv 5 +H-P dP
Since we integrate over H while P is independent variable, we can pull the factor
dt/dP(P), independent of H, out of the integral, cancelling the factor dP/dt

2f1:UdU s

d
drt

dU-dtv = dH-dP

2 ¢ F(H)
17 P) = o= dH
(17) A (P) \/; f -
We define the function G(P) as
(18) G(P) = Vai2-A(P) = [ F(H)

We can use the mathematical equivalence (proof in Appendix 1)



1 +dG

dH < F(H)=—— EW

F(H)

VH - P

(19) G(P) =

1%8

to conclude

1 [ ¢ dP dA
@0) il n‘j; ‘{JP-—H dP
The initial A(t)=dL/dt can be expressed as function of P, i.e. A(P) while keeping the
density per dt, by the unique mapping t=P"'(p) which then allows to calculate (20). We
will come back to this method in the numerical part again.
To express F(H) as integral over t without use of the inverse function P we define T as
the coordinate where the ring of constant H passes the line U=0, i.e. H = P(%) and with it
t = P™'(H) (using P only for a single point). Then applying

21 e gp o I By
dP dt dP dt

yields the integration by t

L Ty

or expressing F directly as “function of 7 — avoiding any inversion of P — and
correspondingly replacing H = P(7) yields

(22b) ———\F fJP = dr()

In all cases F(H)=p(t,U) is the 2D phase space density function per volume element
dtv-dU, A, the 1D projection density per dr.

If A is a function clipped to zero outside t=T,,, while A(t;,) >0, the derivative d\./drt is
a delta-function and the additional contribution AF with

1 lm‘
(23a) AF(H) = +—\/7 equivalent
( ) & 2 \}P 1"hm
~ 1 a r rlim
(23b) AF(T) = +—\/:
) V2 \/P(r“m)—P T

has to be added to the ‘regular’ term. (23) remains finite as long as T does not reach T,
(equivalent H does not reach P(t,,,)), but there it will diverge if M) > 0. This means
that for an infinitely steep rise (step) of the true line density F will diverge; but the
particle count inside a rmg between 7 and T+d7 (H and H+dH), proportional to the
integral over F from 7 and 7+ dt (H to H+dH), remains finite.

Especially this means that the so much liked Gaussian bunch profile, that extends
mathematically to infinity and hence has to be clipped somewhere with A(T;,)>0 to
stay within the bucket, causes some problems or special arrangements have to be made.




Examples for transformations between F(H) and A(t)

Example 1:

Let A(T) have a rectangular shape
~8() A =
(24) AI(T) - }"0 IT| S Thax and hence _‘2\’_2_ — (1’-) 0 |17' T max
0 else dt 0 else

In this case the integral (22) over the constant-A part is zero due to dA,/dv=0, only the
border contribution appears as the delta-integral as shown in (23) using H,..=P(7,,.,)

A O 1
(25) F(H) = . \E N
The density function F(H) itself diverges as H — H_,, but the integral over it, the
particles count, remains finite (the integral over 1/ x remains finite as x — 0).
For this F(H) we now back-calculate A (t) and get for Tt <7, with the U-independent
constant A* =2(H,, - P(7))/
(i M T 1
(26) A(7) = fw F(iaU®+ P(x)) dU = - fA  yo— dU

In fact we find back the initial line density
+A

(27) Alr) = %arcsin(U/A)

= A

-A

Example 2:
We assume that — unknown to us — the density F(H) is constant below the limiting H_,,

else equal to zero (water-bag)

0sH=sH
(&) F(H)={T)0 H.<H

max

Then we will ‘measure’ as line density
+yf2( H o -P(3)) @

@9) A7) = [F({aU’+P(v)) dU= fp, dU = 2,0”\/7 JH_ - P(T)

—o0 ~J2(Hpax -P(®))
Now we assume that we do not know F(H) but only the line density (29) and try to figure
out F(H). From (29) we get

(
(30) dA’ \/7 P
- P(17 dr
and thus using (22b)

31) F(3)= 2. f 2 2,

n % A(P(T) - PO)H,, - P(D) dT
Replacing © as integration variable by P and using the definitions H = P(Z) and
H,oi=P(T o) yields

. oy e
2 n { JP- H)(H

max )

This integral is equal to



Hmnx

_ Po. 2P-H-H_,,
(33) F(H)= -arctan| N )J
(34) F(H)= —p—(arctan(+oo) arctan(-o)) = p,
1

i.e. we find F as put into the problem, as it should be.

Example 3:
From the previous example we can also deduce the shape of A, for a single differential

phase space ring at H=H,

(35) F(H)= p, &H,)

From (29) we know the line density A, for constant F=p, between 0 and a given H,. In
calculating the difference of A, for Hy+dH and for H,, dividing by dH and form the limit
for dH — 0 we get the desired result. The described procedure is the definition of the
derivative, hence

~ 12 d 2 0,
(36) A‘r(r) =2po\/§ E'\JHO_P(t) - \/; T{)_P?
0 ¢ .

We will not explicitly show the inversion here but rely on the calculation in the previous
example.

Example 4:
Except for very special cases as above, to have examples that can be integrated explicitly,

the potential function P(t) has to allow such treatment; unfortunately for general A (T)
this also excludes RF sine waves as sin(t-w). Therefore we assume here a quadratic
potential function (linear oscillator, short bunches) for the following example, i.e.

(37) P(7) =1k7’
and thus
(38) H(Ux)=1alU? + 1kt?
Now A(7) is assumed a parabolic line density (as sometimes assumed for proton bunches)
(39) Alr) = Ao(l — (T/ T )2); T, 2T 2 T,=0
and hence
40) L YN
dt

Then from (22a) and replacing P(A) 1kt =H
Tdr  AV2a

max f‘J k 2—H-' T rj‘l}lx"’c
From this phase-space distribution we can calculate back the line density as

(41) F(H) =

(42) A(r) fF( zaU* + 3k’ )dU-ﬂ f'\/AZ U*dU; A*=klo (12, -T°)

max

with the U- 1ndependent constant A%, As it should be we get



. . 2
(43) A,(r)=j:’r—?f4];arcsin(U/A)|j§ = Ao[l—(t/rmax)z]

max

Numerical calculation of F(H) for general A, and P(t)

Now we want to determine the phase space density F(H) for an arbitrary potential P(t)
and line density (bunch profile) A(t): As already stated above, only functions A, with
certain properties will lead to a realistic non-negative F(H); to avoid problems we have to
check that the resulting F(H) is really non-negative. Furthermore, the function A, defined
either for T = 1, or for t < t, defines the whole phase space density F(H), hence also the
complementary part of .. Therefore only one part has to be defined.

For arbitrary functions a closed solution for F(H) does not exist, apart rare exceptions, so
we have to use numerical methods. The required integrals cannot be handled immediately
by classical numerical integration methods since at the end of range at P—H the
integrand diverges while the integral itself still remains finite.

In the integrals (22) around T, the difference P(t)-H becomes (about) proportional t°,
hence a 1/t term appears in the integral, which has to be counterbalanced by a purely
linear T-term in dA/dT, i.e. A (T) has to be presented proportional to t> with zero constant
and linear term. To avoid this nuisance, it is easier to use integral (20) where the root of
P-H creates a 1/vP term that remains finite during integration even with a constant
numerator. The only slight difficulty is that the function P(t) has to be numerically
inverted; but this has to be done only once and can then be used for any integral.



Appendix 1

Let G(P) be defined by G f m

Conjecture: For K(H)= —— Z’_S\/PI—H dP < K(H)=F(H)

Proof: By shift of variables we transform both integrals to have a constant lower bound

1 0dG dy
H)=-——|— H)—
e e
“ F(x+P) G
(P)= [= = pB= JFb+P)
The latter derivative can be injected into the previous expression

dx dy

K(H)= -—ffF x+y+H)ﬁ

New variables p and ¢ are 1ntroduced3
x = g(l +sin(¢)) and y = g(l— sin(g)).
These variables hold the relations x+y=p and x-y=p-sin(¢). The range 0 < p <  and —/2

< ¢ < +7t/2 covers exactly the initial range O=<x<and 0 <y < oo, It follows

> cosl &
s1n Lreosg) 4 and

b

dx I+s:n(qﬁ) pr cos(cp) d.p

| i-sinte) _preos)|
| —sin(¢ P cos(¢
dy 5 T, d¢

The absolute value of the determinant of this matrix determines the transformation of the
differential volume element as

dx-dy = dp-dq)-&s((b) hence
© +m/2 =
K(H)= _—fdp [d¢ Fp+H) = - [F(p+H) dp=F(H)-F(«)
0 /2 0

The existence of the integral defining G(P) (first line) requires that F vanish for infinitely
large arguments, hence

K(H)= F(H) qed.
Reading all these transformations in inverse order shows that the inverse conclusion also
holds, i.e. for a F(H) as given in the conjecture the creating G(P) can be calculated as in
the first line.

* Motivation: » make x+y=p a single variable in F, x-y being the linear independent complementary
variable « introduce polar-like coordinates so that the radial dependence of the root-term and the differential
volume transformation term cancel ¢ no angular dependence of x+y=p and for x-y=p-g(¢) an angular
function g with simple result: For g’*+ g’=1 the transformation becomes unique with solution cos(¢) or
sin(¢) (easier for boundaries)
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